Setup Guide

https://ardity.dwilches.com

https://ardity.dwilches.com/

Setup Guide

1. Double-click on the file Ardity.unitypackage or download it from the Asset
Store, and click on the Import button:

Import Unity

2. The package files will be imported in the Ardity folder:

@1 Project
| create -|

» Favorites Assets » Ardity »

V il Assets
Wl Prefabs
i Scenes
> i Scripts Prefabs Scenes Scripts
[l Scenes
v Wl Packages
» Wl Analytics Library
» @l com.unity.ads
» @l In App Purchasing
» Wl Package Manager UI
» il TextMesh Pro

3. There are some sample scenes inside the Unity package, they are a good
starting point, but basically what you need to get Ardity up and running is

adding the SerialController prefab to one of your GameObjects (*Cube” in
this image):

@ Global & Collab -

= Hierarchy

\ Create - | (& AT D)

© Inspector

| Gizmos ~| (&xAT

Lo | GH— we (] static
T gamera — Tag [Untagged 4] Layer [Default =
Directional Light Prefab [Select | Revert I Apply. |

v . Transform o
Position x/o Yo z o
Rotation x/o Yo z o
Scale x[1 5 z1

v .. M Serial Controller (Script) ER
Script + SerialController]
Port Name CoM3
Baud Rate 9600
Message Listener None (Game Object) o
Reconnection Delay 1000 |
Max Unread Messagel |

[Add Component]

& Project
| create ~|

& D |4 [%|* ||
» Favorites Assets » Ardity » Prefabs

v Wl Assets

v il Ardity
Wl Scenes

» @l Scripts SerialContr. SerialContr.
il Scenes

v Wl Packages

» Wl Analytics Library

» i com.unity.ads

» Wl In App Purchasing
» Wl Package Manager UT
» Wl TextMesh Pro

4. You have two options to get the events of your Arduino program at this
point:
o If you let the "Message Listener" field unset, then you need to poll Ardity
each time you want to get a message.

o If you want Ardity to automatically call your own callback whenever a
message arrives, then set the "Message Listener” field to a GameObject
that has the following methods "OnMessageArrived” and
“OnConnectionEvent”.

5. In this manual we’ll follow the second option: creating a Message Listener.

6. Right click on your Project’s “"Assets” folder, select “Create” and then “C#
Script”. We'll call our file *"MyMessagel.istener”.

7. Double click on the new file and write the following inside it:

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class MyMessageListener : MonoBehaviour {

// Use this for initialization
void Start () {
}

// Update is called once per frame
void Update () {

}

// Invoked when a line of data is received from the serial device.
void OnMessageArrived(string msg)

{
Debug.Log("Arrived: " + msg);

}

1

// Invoked when a connect/disconnect event occurs. The parameter 'success
// will be 'true' upon connection, and 'false’ upon disconnection or
// failure to connect.
void OnConnectionEvent(bool success)
{
Debug.Log(success ? "Device connected" : "Device disconnected");
}
}

8. Save the file and go back to Unity.

9. Now add the script "“MyMessagelistener” to your “SerialController”
GameObject (it can be any GameObject actually, but in this example we'll
reuse the SerialController):

© Inspector Fl o=
; ¥ SerialController [] Static =
Tag Layer (Defedt4)
Prefab | Select | Revert | Apply]
v .. Transform @ = =
Position X0 YO Z O
Rotation X0 YO Z O
Scale X1 Y 1 Z 1
¥ i [/ Serial Controller (Script) ﬁ e e 8
Script SerialController o]
Port Name COM3
Baud Rate 9600
Message Listener None (Game Object) [0}
Reconnection Delay | 1000
Max Unread Message 1
¥ ci ¥ My Message Listener (Scrip’ ﬁ il - 8
Script MyMessagelListener ©
[Add Component J

10. Now set the “"Message Listener” field to the GameObject that contains
the “MyMessagelistener” script:

© Inspector | Fl o=
| SerialController [] Static =
Tag R —
Prefab | Select | Revert | Apply]
v .. Transform @ = =,
Position X0 YO Zo0
Rotation X0 YO Z O
Scale X1 Y 1 Z1
v o [/ Serial Controller (Script) @ = %
Script Serial Controller 0]
Port Name COM3
Baud Rate 9600
Message Listener |gSerialController o]
Reconnection Delay 1000
Max Unread Message 1
¥ | ¥ My Message Listener (Scrip [l & %
Script MyMessagelistener ©
[Add Component J

11.
12.

13.

Run your scene and check the console.

At this point, Ardity is trying to read from the COM3 port, you should see
a series of warnings like in the following image if there is no Arduino
device connected on COM3:

3 Project | El Console |
Clear | | Collapse | Clear on Flay | Error Pause @ Editor =

Exception: The port *COM3' does not exist. StackTrace: at System.IO.Ports.WinSerialStream.Rep
at System.IO.Ports.WinSerialStream..ctor (System.String port_name, Int32 baud_rate, Int32 dal

Exception: The port " COM3' does not exist. StackTrace: at System.IO.Ports.WinSerialStream.Rep
at System.IO.Ports.WinSerialStream..ctor (System.String port_name, Int32 baud_rate, Int32 dal

Exception: The port *COM3' does not exist. StackTrace: at System.IO.Ports.WinSerialStream.Rep
at System.IO.Ports.WinSerialStream..ctor (System.String port_name, Int32 baud_rate, Int32 dal

Exception: The port " COM3' does not exist. StackTrace: at System.IO.Ports.WinSerialStream.Rep
at System.IO.Ports.WinSerialStream..ctor (System.String port_name, Int32 baud_rate, Int32 dal

Exception: The port *COM3' does not exist. StackTrace: at System.IO.Ports.WinSerialStream.Rep
at System.IO.Ports.WinSerialStream..ctor (System.String port_name, Int32 baud_rate, Int32 dal

To test that Ardity indeed works, copy the following program in the
Arduino IDE, and upload it to your Arduino:

unsigned long last_time = 0;

void setup() {
Serial.begin(9600);
}

void loop()
{
// Print a heartbeat
if (millis() > last_time + 2000)
{
Serial.println("Arduino is alive!!");
last_time = millis();

}

// Send some message when I receive an 'A' or a 'Z'.
switch (Serial.read())
{
case 'A":
Serial.println("That's the first letter of the abecedarium.");
break;
case 'Z":
Serial.println("That's the last letter of the abecedarium.");
break;

14. Note that COM3 may not be the port that your system assigns to your
Arduino, validate it in the Arduino IDE in the “Tools” menu and then
“Port: COMX"” submenu:

@ sketch apri8a | Arduino 1.8.5
File Edit Sketch Tools Help
Auto Format Ctrl+T
Archive Sketch
sketch_apr1g Fix Encoding & Reload
1 |lunsigned Serial Monitor Ctrl+Shift+M A
= Serial Plotter Ctrl+Shift+L
3 void set
48 { WiFi101 Firmware Updater
5 Seri
6 1 Board: "Arduino/Genuino Uno* >
7 Port: "COM1" Serial ports
¢ void 100 Get Board Info [~ comt
98 {
10 /P Programmer: "AVR ISP* >
1L if « Burn Bootloader
128 {
13 Serial.println("Arduino is alive!!");
14 last_time = millis();
15 }
16
17 // sSend some message when I receive an 'A' or a 'z'.
18 switch (Serial.read())
158 {
20 case 'A':
21 Serial.println("That's the first letter of the abecedarium.");
22 break;
23 case "z':
24 Serial.println("That's the last letter of the abecedarium.");
25 break;
26 1
27 |}

15. As in this example the port is COM1, let’s change it in the Unity project

to match:
© Inspector
(v [SeriaIController] [] Static v
- =
Prefab | Select | Revert | Apply)
v .~ Transform -
Position X 0 YO 'Zo |
Rotation X|o Yo 'zo |
Scale X1 Y1 Z1 |
v @ (¥ Serial Controller (Script) il =
Script « SerialController [o]
Port Name |COM1 |
Baud Rate |9600 |
Message Listener |None (Game Object) | ©
Reconnection Delay 1000 |
Max Unread Message 1 |
v @ ¥ My Message Listener (Scrip’ prifl <
Script < MyMessagelListener ©
[Add Component }

16.

17.

18.

Now run the Arduino code by pressing the “Upload” button:

@@ sketch_apri8a | Arduino 1.8.5

File Edit Sketch Tools Help

elratrh anrifQa

And then run your Unity scene. Look at the console again:

|Clear | | Collapse | Clear on Flay | Error Pause l Editor "

@ Device connected
UnityEngine.Debug: Log(Object)

@ Arrived: Arduino is alive!!
Unity Engine.Debug :Log(Object)

@ Arrived: Arduino is alive!!
Unity Engine.Debug :Log(Object)

@ Arrived: Arduino is alive!!
Unity Engine.Debug :Log(Object)

It works! The messages from the Arduino are being received by Ardity.

Where to go how?

1. From now on, you can check the remaining sample scenes where you can
see sample implementations of more advanced features:

@ Project [] console

Create = Q

> Favorites Assets » Ardity » Scenes
¥l Assets
¥ Ardity
- Prefabs
Scenes
» Wl Scripts DemoScen... DemoScen... DemoScen... DemoScen... DemoScen...
Wl Scenes

¥ i Packages
b W Analytics Library
b @l com.unity.ads
b @l In App Purchasing
b @ Package Manager UT
b TextMesh Pro

2. These sample scenes cover the following topics:
o How to handle messages that are not delimited by newlines
o How to send data back to the Arduino
o How to register a “TearDown” callback

FAQ

1. How do I do X?

If there is something that is troubling you, create an Issue in GitHub:
https://github.com/DWilches/Ardity/issues

And I'll do my best to get back to you (normally within some hours).

2. I'm getting the error "The type or namespace name 'Ports' does not
exist”

By default, Unity uses a subset of the .NET framework, so if you get this
error message:

Assets/Ardity/Scripts/SerialThread.cs(9,17): error CS0234:
The type or namespace name 'Ports' does not exist in the
namespace 'System.IO'. Are you missing an assembly
reference?

It's because the current "API Compatibility Level" of your Unity project is
set to ".NET 2.0 Subset", which doesn't contain the classes necessary for
serial communication.

To solve the problem, go to Edit — Project Settings — Player, and under
"Other Settings" find an option that reads "Api Compatibility Level”
and change it from ".NET 2.0 Subset" to ".NET 2.0".

3. Does this library only support communication based on lines of
strings?

Yes, but you can change it easily to support your own protocol. Check the
SerialThread script.

https://github.com/DWilches/Ardity/issues

